
Calling Web Services
from Unity

Developing a web service

❖ This demo will use Node.js (https://nodejs.org/)
➢ Runs on command line -- you don’t have to install Apache, IIS, etc. to work locally
➢ Makes sending and receiving JSON easy

❖ DotNetCore has a similar approach
❖ Really, any platform will work

https://nodejs.org/

Connecting to HTTP/HTTPS in Unity

❖ Unity supports this with UnityWebRequest
➢ Asynchronous; check isDone each Update/coroutine

❖ This demo will use RestClient
(https://github.com/proyecto26/RestClient)
➢ Wrapper around UnityWebRequest for compatibility
➢ Asynchronous via Promises

https://github.com/proyecto26/RestClient

Promises in C#

❖ Alternative to callbacks
❖ RestClient implements via

https://github.com/Real-Serious-Games/C-Sharp-Promise
❖ Creating a Promise object begins an asynchronous process (defined

as a function)
❖ Methods on Promise handle the result of that process:

➢ .Then((result) => Debug.Log(“Got response: “ + result))
➢ .Catch((error) => Debug.Log(error))

❖ Can chain multiple Promises and Then methods together

https://github.com/Real-Serious-Games/C-Sharp-Promise

Hosting Node.js or DotNetCore

❖ Applications run their own servers, rather than being run through a
standard web server

❖ The application is proxied through a web server like Apache or IIS,
where other options (SSL, etc.) can be configured

❖ Many cloud services (Azure App Services, etc.) can handle these
applications directly

❖ IIS can run Node.js via iisnode (https://github.com/Azure/iisnode)
❖ Apache and other servers can run through a proxy

https://github.com/Azure/iisnode

Questions? Comments?

https://www.dylanwolf.com/

@dylanwolf

https://www.dylanwolf.com/

